MIM-23 Hawk

MIM-23 Hawk

MIM-23 Hawk
Type Surface-to-air missile
Place of origin  United States
Service history
In service August 1960[1] - present
Production history
Manufacturer Raytheon Corporation
Unit cost $250,000 per missile
$15 million per fire unit
$30 million per battery
Specifications
Weight 1,290 pounds (590 kg)
Length 16 feet 8 inches (5.08 m)
Diameter 14.5 inches (370 mm)

Warhead 119 pounds (54 kg) blast fragmentation warhead

Engine solid-fuel rocket engine
Wingspan 3 feet 11 inches (1.19 m)
Operational
range
45-50km
Flight ceiling 45,000 feet (14,000 m)
Speed Mach 2.4
Guidance
system
Semi-active radar homing

The Raytheon MIM-23 Hawk is a U.S. medium range surface-to-air missile. The Hawk was initially designed to destroy aircraft and was later adapted to destroy other missiles in flight. The missile entered service in 1960, and a program of extensive upgrades has kept it from becoming obsolete. It was superseded by the MIM-104 Patriot in United States Army service by 1994. It was finally phased out of U.S. service in 2002, the last users, the U.S. Marine Corps replacing it with the man-portable infrared-guided visual range FIM-92 Stinger. The missile was also produced outside the US in Western Europe, Japan and Iran.[2]

Although the U.S. never used the Hawk in combat, it has been employed numerous times by other nations. Approximately 40,000 of the missiles were produced. Jane's reported that the original system's single shot kill probability was 0.56; I-Hawk improved this to 0.85.[3]

Similar Soviet systems are the SA-3 and SA-6.

Contents

Development

Development of the Hawk missile system began in 1952, when the United States Army began studies into a medium range semi-active radar homing surface-to-air missile. In July 1954 development contracts where awarded to Northrop for the launcher, radars and fire control systems, while Raytheon was awarded the contract for the missile. The first test launch of the missile then designated the XSAM-A-18 happened in June 1956. By July 1957 development was completed, by which time the designation had changed to XM3 and XM3E1. Very early missiles used the Aerojet M22E7 which was not reliable; the problems were resolved with the adoption of the M22E8 engine.

The missile was initially deployed by the U.S. Army in 1959, and by the US Marine Corps in 1960.

The high complexity of the system, and the quality of tube-based electronics, gave the radars in the early Hawk systems a MTBF of only 43 hours. The improved Hawk system increased this to 130 to 170 hours. Later Hawk versions improved this further to between 300 and 400 hours.

Improved Hawk or I-Hawk The original Hawk system had problems engaging targets at low altitude - the missile would have problems picking the target out against ground clutter. The US army began a program to address these issues in 1964 - the Hawk Improvement Program (Hawk/HIP). This involved numerous upgrades to the Hawk system:

The system entered service during 1972, the first unit reaching operational status by October. All US units were upgraded to I-Hawk standard by 1978.

Product Improvement Plan In 1973 the U.S. Army started an extensive multi-phase Hawk PIP (Product Improvement Plan), mainly intended to improve and upgrade the numerous items of ground equipment.

Hawk Missile Restore Reliability (MRR)

This was a program that ran between 1982 and 1984 intended to improve missile reliability.

Hawk ECCM

Running alongside the MMR program, this produced ECCM to specific threats, probably contemporary Soviet ECM pods such as the SPS-141 fitted to the Su-22, which proved moderately effective during the Iran-Iraq War. The MIM-23C and E missiles contain these fixes.

Low clutter enhancements

Upgrades to the missile that takes it up to MIM-23G that enable the missile to deal with low flying targets in a high clutter environment. These were first deployed in 1990.

Hawk missile ILM (Improved lethality modification)

To improve the lethality of the warhead of the missile against ballistic missiles, the warhead was redesigned to produce fewer larger fragments, typically 35 grams each comparable to a 12.7 mm projectile in mass.

Hawk mobility and TMD upgrades

A Hawk mobility survivability enhancement programme has been developed following experience in the 1990 Gulf War. The aim of this programme was to reduce the number of support vehicles per battery and to increase survivability. Upgrades to the launcher allow missiles to be transported on the launcher itself, as well as replacing vacuum tubes with a single laptop computer. A north finding system speeds orientation and launcher alignment. A field wire replaces heavy cables and allows for greater dispersion amongst battery vehicles from 110 m to 2 km. The upgrades where deployed by the US Marine Corps between early 1995 and September 1996.

Phase IV

With both the Army and USMC abandoning the Hawk, phase IV was never completed. However it was planned to include:
  • High mobility continuous wave acquisition radar to improve detection of small UAVs.
  • A new CW engagement radar.
  • Anti-radiation missile decoys.
  • An improved missile motor.
  • An upgraded electro-optical tracker.
  • Improved command and control.
  • ATBM upgrades.

Hawk XXI (Hawk 21)

The Hawk XXI or Hawk-21 is a more advanced, and more compact version of Hawk PIP-3 upgrade. Hawk-XXI basically eliminates the PAR and CWAR radars with the introduction of 3D MPQ-64 Sentinel radars. Norway's Kongsberg Company provides an FDC (Fire Distribution Center) as it is used in NASAM system in Norway. The missiles are upgraded MIM-23K standard with an improved blast-fragmentation warhead that creates a larger lethal zone. The system is also effective against short range tactical ballistic missiles.
A MPQ-61 HIPIR radar provides low altitude and local area radar coverage as well as continuous wave radar illumination for the MIM-23K Hawk missilles.

Description

The Hawk system consists of a large number of component elements. These elements were typically fitted on wheeled trailers making the system semi-mobile. During the system's 40-year life span, these components were continually upgraded.

The Hawk missile is transported and launched from the M192 towed triple-missile launcher. A self propelled Hawk launcher, the SP-Hawk, was fielded in 1969, which simply mounted the launcher on a tracked M727 (modified M548), however the project was dropped and all activity terminated in August 1971.

The missile is propelled by a dual thrust motor, with a boost phase and a sustain phase. The MIM-23A missiles were fitted with an M22E8 motor which burns for 25 to 32 seconds. The MIM-23B and later missiles are fitted with an M112 motor with a 5 second boost phase and a sustain phase of around 21 seconds. The M112 motor has greater thrust, thus increasing the engagement envelope.

The original MIM-23A missiles used a parabolic reflector, but the antenna directional focus was insufficient, when engaging low flying targets the missile would dive on them, only to lose them in the ground clutter. The MIM-23B I-Hawk missiles and later uses a low side lobe, high-gain plane antenna to reduce sensitivity to ground clutter in addition to an inverted receiver developed in the late 1960s to give the missile enhanced ECCM ability and to increase the Doppler frequency resolution.

A typical Basic Hawk battery consists of:

A typical Phase-III Hawk battery consists of:

Missiles

Type of Missile Entered
service
Tactical
model
Training and
Evaluation model
Prototype 1957 XM3
(XMIM-23A)
n/a
Basic Hawk 1959 (M3)
MIM-23A
XM16/18
(XMTM-23B/C)
Basic I-Hawk 1971
to
1978
MIM-23B XMEM-23B
Improved ECCM 1982 MIM-23C/D MEM-23C
Low-level/
multi-jamming
1990 MIM-23E/F MEM-23D
New body
section
early
1990s
MIM-23G/H MEM-23E
New warhead
and
fuzing (anti-TBM)
1995 MIM-23K/J MEM-23F
New fuzing only,
old warhead
1995 MIM-23L/M

The Hawk missile has a slender cylindrical body and four long chord clipped delta-wings, extending from mid-body to the slightly tapered boat-tail. Each wing has a trailing-edge control surface.

In the 1970s, NASA used surplus Hawk missiles to create the Nike Hawk sounding rocket.[4]

Basic Hawk: MIM-23A

The original missile used with the system. The 54-kilogram (120 lb) warhead produces approximately 4,000 8-gram (0.28 oz) fragments that move at approximately 2,000 meters per second (6,600 ft/s) in an 18 degree arc. [2]

I-Hawk: MIM-23B

The MIM-23B has a larger 74 kg (160 lb) blast-fragmentation warhead, a smaller and improved guidance package, and a new M112 rocket motor. The new warhead produces approximately 14,000 2-gram (0.071 oz) fragments that cover a much larger 70 degree arc. The missiles M112 rocket motor has a boost phase of 5 seconds and a sustain phase of 21 seconds. The motors total weight is 395 kg (870 lb) including 295 kg (650 lb) of propellant. This new motor improves the engagement envelope to 1.5 to 40 km (0.93 to 25 mi) in range at high altitude, and 2.5 to 20 km (1.6 to 12 mi) at low altitude, the minimum engagement altitude is 60 meters (200 ft). The missile was operational in 1971. All US units had converted to this standard by 1978.

System components

The Hawk and Improved Hawk structure was integrated into one system - AN/TSQ-73 air defense missile control and coordination system, called Missile Minder or Hawk-MM. It consists of the following components: MPQ-50 Pulse Acquisition Radar, MPQ-48 Improved Continuous Wave Acquisition Radar, TSW-8 Battery Control Central, ICC Information Coordination Central, MSW-11 Platoon Command Post, MPQ-46 High Power Illuminator, MPQ-51 Range Only Radar and the M192 Launcher.[5]

Improved ECCM

Introduced around 1982 with improved ECCM capabilities.

Unknown upgrade to the MIM-23C. The C and D missile families remained separate until the missiles' exit from service. It is not clear exactly what the difference between the two missiles - however it seems likely that the D family missiles represent an alternative guidance system, possibly home on jam developed in response to Soviet ECM techniques that were used by Iraq during the Iran-Iraq War.

Low level/multi jamming

An upgraded to the MIM-23C/D missiles improved guidance for low level engagements in a high clutter/multi-jamming environment. Introduced in 1990.

New body section

A 1995 upgrade consisting of a new body section assembly for the MIM-23E/F missiles.

New warhead + fuzing (anti-TBM)

Introduced around 1994. Enhanced lethality configuration warhead with 35 gram (540 grain) fragments instead of the I-Hawks 2 gram (30 grain) fragments. MIM-23K Hawk missiles are effective up to 20,000 m altitude and up to 45 km in range. The missile also includes a new fuse to make it effective against ballistic missiles.

New fuzing + old warhead

Retains the I-Hawks 30 grain warhead, but with the new fuse.

Radars

The original Hawk system used 4 radars: to detect (PAR and CWAR), to track (CWAR and HPIR) and to engage (HPIR and ROR) targets. As the system was upgraded the functionality of some of the radars was merged. The final iteration of the system consists of only 2 radars, an enhanced phased array search radar and an engagement radar (HPIR).

System Basic Hawk
1959
Improved Hawk
1971
PIP Phase I
1979
PIP Phase II
1983 to 1986
PIP Phase III
1989
Hawk XXI
PAR AN/MPQ-35 AN/MPQ-50 AN/MPQ-64
CWAR AN/MPQ-34 AN/MPQ-48 AN/MPQ-55 AN/MPQ-62
HPIR AN/MPQ-33/39 AN/MPQ-46 AN/MPQ-57 AN/MPQ-61
ROR AN/MPQ-37 AN/MPQ-51
none

PAR Pulse Acquisition Radar
The pulse acquisition radar is a long range, high altitude search radar.

The search radar used with the basic Hawk system, with a radar pulse power of 450 kW and a pulse length of 3 µs, a Pulse Repetition Frequency of 800 and 667 Hz alternately. The radar operates in the 1.25 to 1.35 GHz range. The antenna is a 6.7 × 1.4 m (22 × 4.6 ft) elliptical reflector of open lattice construction, mounted on a small two-wheeled trailer. Rotation rate is 20 rpm, the BCC - Battery Control Central and the CWAR are synchronized by the PAR revolutions and the PAR system trigger.

Introduced with the I-Hawk system, the improved-PAR. The system introduces a digital MTI (Moving Target Indicator) that helps separate targets from ground clutter. It operates in the 500 to 1,000 MHz (C-band) frequency range with a peak operating power of 1,000 watts.

A X-Band 3D range-gated doppler radar system used with the Hawk XXI system. It replaces both the CWAR and PAR components of the Hawk system. MPQ-64 Sentinel provides coverage out to a range of 75 km (47 mi), rotating at 30 rpm. The system has a mean time between failure of around 600 hours, and can track at least 60 targets at once. It can elevate up to +55 degrees and depress to -10 degrees.[6]

CWAR Continuous Wave Acquisition Radar
This X Band Continuous wave system is used to detect targets. The unit comes mounted on its own mobile trailer. The unit acquires targets through 360 degrees of azimuth while providing target radial speed and raw range data.

MPQ-34 Hawk CW Acquisition radar with a power rating of 200 W and a frequency of 10 GHz (X-Band) Built by Raytheon. Replaced by MPQ-48.

The Improved Hawk version of the CW acquisition radar doubled the output power and improved the detection ranges:

Hawk Improved Continuous Wave Acquisition Radar or ICWAR. The output power is doubled to 400 W, this increases the detection range to around 70 km (43 mi). The radar operates in the 10–20 GHz (J-band). Other features include FM ranging and BITE (Built in test equipment). Frequency modulation is applied to the broadcast on alternate scans of the ICWAR to obtain range information.

Some changes to the signal processing allow the radar to determine the targets' range and speed in a single scan. A digital DSP system is added which allows a lot of the processing work to be done on the radar directly and forwarded directly via a serial digital link to the PCP/BCP.

HPIR High Power Illuminating Radar
The early AN/MPQ-46 High Power Illuminator (HPIR) radars had only the two large dish-type antennas side by side, one to transmit and one to receive. The HPIR automatically acquires and tracks designated targets in azimuth, elevation and range. It also serves as an interface unit supplying azimuth and elevation launch angles computed by the Automatic Data Processor (ADP) in the Information Coordination Centre (ICC) to the IBCC or the Improved Platoon Command Post (IPCP) for up to three launchers. The HPIR J-band energy reflected from the target is also received by the Hawk missile. These returns are compared with the missile reference signal being transmitted directly to the missile by the HPIR. Target tracking is continued throughout the missile's flight. After the missile intercepts the target the HPIR Doppler data is used for kill evaluation. The HPIR receives target designations from one or both surveillance radars via the Battery Control Centre (BCC) and automatically searches a given sector for a rapid target lock on. The HPIR incorporates ECCM and BITE.

This X Band CW System is used to illuminate targets in the Hawk Missile Battery. The unit comes mounted on its own mobile trailer. Unit automatically acquires and tracks designated targets in azimuth elevation and range rate. The system has an output power of around 125 W operating in the 10-10.25 GHz band. MPQ-39 was an upgraded version of the MPQ-33.

The radar operates in the 10–20 GHz (J-band) region. Many of the electron tube components in earlier radars are replaced with solid-state technology.

The majority of the remaining tube electronics are upgraded to solid state. Also, an electro-optical tracking system, the daytime only OD-179/TVY TAS (Tracking Adjunct System) is added for operation in a high ECM environement. The TAS was developed from the US Air Forces TISEO (Target Identification System, Electro-Optical) by Northrop. It consists of a video camera with a x10 zoom lens. The I-TAS which was field tested in 1992 added an Infra Red capability for night operation as well as automatic target detection and tracking.

  • HEOS Germany, Netherlands and Norway modified their Hawk systems with an alternative IR acquisition and tracking system known as the Hawk Electro-Optical Sensor (HEOS) in place of the TAS. HEOS operates in the 8 to 11 µm band and is used to supplement the HPI to acquire and track targets before missile launch.

Upgraded with the addition of the LASHE (Low-Altitude Simutaneous Hawk Engagement) system, which allows the Hawk to engage multiple low level targets by employing a fan beam antenna to provide a wide-angle, low-altitude illumination pattern to allow multiple engagements against saturation raids. This antenna is rectangular. This allows up to 12 targets to be engaged at once. There is also TV/IR optic system for passive missile guidance.

ROR Range Only Radar
Pulse radar that automatically comes into operation if the HPIR radar cannot determine the range, typically because of jamming. The ROR is difficult to jam because it operates only briefly during the engagement, and only in the presence of jamming.

A Ku Band (Freq: 15.5-17.5 GHz) pulse radar, the power output was 120 kW. Pulse length 0.6 µs at a pulse repetition frequency of 1600 Hz. Antenna: 4-foot (1.2 m) dish.

FDC (Hawk Phase III and Hawk XXI) - Fire Distribution Center. C4I unit, enabling modern command, control, communications and Force Operation. Color displays with 3D map overlays enhance the situation awareness. Instriduces the real-time exchange of air picture and commands between the Hawk units. Make-ready capability for SL-AMRAAM and SHORAD/vSHORAD systems.

Country specific modifications

The Israelis have upgraded the Phase 2 standard with the addition of a Super Eye electro-optical TV system for detection of aircraft at 30 to 40 km and identification at 17 to 25 km. They have also modified their system for engagements at altitudes up to 24,000 m.

A composite system firing AIM-7 Sparrow missiles from a modified 8 round launcher. The system was demonstrated at the China Lake weapons test site in 1985. There are currently no users of the system.

At "Safe Air 95" AMRAAM missiles were demonstrated being fired from a modified M192 missile launcher. The normal battery radar is used for the engagement, with the missile's own radar used for terminal homing. Raytheon and Kongsberg are offering this system as an upgrade to the existing Hawk system. This proposal is aimed particularly at Hawk operating countries that also have AIM-120 AMRAAM in their inventory. Norway is currently operating this type of system as NASAMS.

The Islamic Republic of Iran Air Force is reported to have experimented with a number of MIM-23 Hawk missiles for carriage on F-14 Tomcat fighters in the air-to-air role under a program known as SKY Hawk. Iran has also modified its ground-based Hawk systems for carriage on a convoy of 8x8 wheeled vehicles and adapted the launchers to carry Standard RIM-66 or AGM-78 missiles with two Standard missiles per launcher.

The Islamic Republic of Iran Air Force had recently revealed its own version of the MIM-23 Hawk the Shahin which it claims to be under production. In 2010 Iran announced that it will be mass producing its next generation of air defense system called Mersad which would integrate with the Shahin missile.[7]

Norway has developed its own Hawk upgrade scheme known as the Norwegian Adapted Hawk (NOAH) which involves the lease of I-Hawk launchers, HPI radars and missile loaders from the USA and their integration with Hughes (now Raytheon) Kongsberg Acquisition Radar and Control Systems. The NOAH system became operational in 1988. It was replaced by NASAMS in the period 1995-1998.

Future developments were expected to include the introduction of an Agile CW Acquisition Radar (ACWAR), which is an evolution of the Hawk CW radar technology. It would perform full 3-D target acquisition over a 360° azimuth sector and large elevation angles. The ACWAR programme was initiated to meet increasingly severe tactical air defence requirements and the equipment is being designed for operation of Hawk in the late 1990s and beyond. However, the ACWAR programme was terminated in 1993.

History

Operators

Phase II These countries have implemented Phase 1 and Phase 2 improvements.

Phase III

Hawk XXI

[12] - 24 batteries

See also

References

  1. ^ As given in Jane's Land-Based Air Defence 1996-97. Site designation-systems.net gives the initial operational capability as August 1959 with the U.S. Army.
  2. ^ http://www.payvand.com/news/09/jun/1059.html
  3. ^ Tony Cullen and Christopher F. Foss (Eds), Jane's Land-Based Air Defence Ninth Edition 1996-97, p. 296, Coulsdon: Jane's Information Group, 1996.
  4. ^ Origins of NASA Names. NASA. 1976. p. 131. 
  5. ^ MIM-23A Hawk/MIM-23B Improved Hawk - Archived 2/2003
  6. ^ [1]
  7. ^ http://www.presstv.com/detail.aspx?id=123003&sectionid=351020101
  8. ^ http://s188567700.online.de/CMS/index.php?option=com_content&task=view&id=67&Itemid=47
  9. ^ Arabian Knights: Air Defense Artillery in the Gulf War, Lisa B. Henry Ed., ADA Magazine 1991. Page 3
  10. ^ Arabian Knights. Page 3
  11. ^ Surface to air missiles inventory on the Romanian Air Force Official Site, accessed 18th June 2007.
  12. ^ http://www.koreadefence.net/wys2/file_attach/2009/10/11/1255272637-60.jpg

External links